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Chapter 1

Introduction

1.1 Context and Motivation

This project has been developed as a final project for the Electronic Engineering
degree at the investigation group Investigación en Instrumentación y Acústica Aplicada
(I2A2) and belongs to the International Thermonuclear Experimental Reactor
(ITER) project. The main goal is to create an outlier detection system that can be
used to monitor the performance of the ITER reactor, ensuring its safe and efficient
operation.
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Chapter 2

State of the Art

2.1 Introduction to the ITER Project

The ITER project is an international collaboration aimed at demonstrating the
feasibility of nuclear fusion as a large-scale and carbon-free source of energy. It
is being constructed in Cadarache, France, and involves 35 countries, including
the European Union, the United States, China, India, Japan, Russia, and South
Korea. The project aims to build the world’s largest tokamak reactor, which will
use magnetic confinement to achieve controlled nuclear fusion.

Inside the tokamak, plasma will be heated to extremely high temperatures, allowing
hydrogen isotopes to fuse and release energy. The reactor is designed to produce
ten times more energy than it consumes, making it a potential game-changer in
the field of energy production.

A Discharge is a plasma operation in the tokamak, where the plasma is created
and maintained for a certain period. Each discharge is characterized by various
parameters, such as plasma current, inductance, density, radiated power or input
power. When these parameters deviate from their expected values, it can indicate
potential issues or anomalies in the reactor’s operation.

A Disruption is an event that occurs when the plasma becomes unstable and loses
confinement, leading to a rapid cooling of the plasma and a loss of control. For
this project, discharges are classified as either disruptive or non-disruptive.

A Campaign is a set of discharges that are analyzed together. For this project, there
are three campaigns available, each containing a different number of discharges.
The available data for the project is summarized in Table 1.

Table 1: Available data for the project

Campaign Discharges Disruptive Non–Disruptive Disruptive Rate

C23 522 32 490 6.13 %
C24 388 26 362 6.70 %
C25 611 41 570 6.71 %

A visual representation of the plasma current on several discharges is shown
in Figure 1. This figure illustrates the singular bathtub shape of non-disruptive
discharges, whereas disruptive discharges show a more erratic pattern.
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Figure 1: Plasma current on disruptive and non-disruptive discharges

2.2 Anomaly Detection in Nuclear Fusion

Anomaly detection in nuclear fusion is crucial for ensuring the safe and efficient
operation of reactors like ITER. The complexity of the plasma behavior and the
multitude of parameters involved make it challenging to monitor and control
the system effectively. Anomalies can lead to disruptions, which can damage the
reactor components and affect the overall performance.

To address this challenge, various machine learning techniques have been applied
to analyze the data generated during discharges. These techniques aim to identify
patterns and deviations in the data that may indicate potential anomalies. An
early detection of these anomalies is essential to prevent disruptions and ensure
the stability of the plasma, using gas injection to stop the nuclear fusion reaction
before it causes damage to the reactor.

2.2.1 Current implementation

The current implementation is based on a Support Vector Machine (SVM) model
trained on historical discharge data. The model is designed to classify discharges
as normal or anomalous based on the input parameters. The training process
involves using labeled data, where each discharge is categorized as either normal
or anomalous.

SVM is a machine learning algorithm whose goal is to find the optimal hyperplane
that separates the data into different classes [1]. On the training phase, the model
receives entire discharges as input, and the category of the discharge. Then, it
divides data in windows of 32 milliseconds, and extracts the mean value and the
Fast Fourier Transform (FFT) of each window. On the prediction phase, the model
receives a data stream, and fills a buffer to create a window. Then, it extracts the
same features as in the training phase, and predicts the category of this window. If
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the model predicts an anomalous window, the discharge is classified as anomalous.
This classification shall be done before the disruption occurs.

There are some limitations to this approach. First, a window-based approach does
not take into account the temporal dependencies of the data. This means that the
model may not be able to capture the dynamics of the plasma behavior over time.
Second, SVM models with non-linear kernels have a complexity between O(n2)
and O(n3), where n is the number of training samples. This means that the model
may not be able to scale to large datasets [2]. Third, even though SVM models do
not require a balanced dataset, the model could be biased towards the majority
class, leading to a high false negative rate [3]. This is particularly important in
this project, as the number of non-disruptive discharges is much higher than the
number of disruptive discharges, as shown in Table 1.

2.3 Alternative approaches

This project aims to explore alternative approaches to anomaly detection in nuclear
fusion, focusing on the use of other Machine Learning (ML) algorithms. Models
used in this project can be grouped into three categories: decision trees based
models, machine vector support based models and deep learning models. For each
category, there are two subcategories: outlier detection and binary classification.
Outlier detection models are trained on a single class of data (non-disruptive
discharges), and generate a decision boundary that separates the normal data
from the anomalies. Supervised binary classification models are trained on both
classes of data (disruptive and non-disruptive discharges), and generate a decision
boundary that separates the two classes.

2.3.1 Decision Trees based models

Decision trees are a type of ML algorithm that uses a tree-like structure to make
decisions based on the input data. This structure is built at the training phase,
where the algorithm recursively splits the data into subsets based on the features
that provide the most information gain. The resulting tree can be used to classify
new data points by following the branches of the tree based on their feature values
[4].

Outlier detection

Decision trees can be used for outlier detection by training the model on a single
class of data (non-disruptive discharges) and identifying instances that fall outside
the normal patterns. The decision tree learns the characteristics of the normal data
and can flag instances that do not conform to these patterns as potential anomalies.

Isolation Forest (IForest) is the canonical example of this approach. It splits the
data at random features and thresholds, creating a forest of trees. Anomalies tend
to be isolated in fewer splits than normal instances, because they lie in sparse
regions of the feature space [5]. Later improvements, like Extended Isolation Forest
replace axis-aligned cuts with random hyperplanes to reduce bias [6].
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Binary classification

If labelled data of both classes exist, standard decision-tree classifiers or ensembles
(Random Forests, Gradient Boosting) can draw an explicit boundary between them.
With sufficient minority class samples, these models usually outperform outlier
detection models, as the tree learns exactly which feature ranges characterize each
class rather than inferring a boundary from a single class. In practice, binary trees
are common in fraud detection and network-intrusion datasets, where even a
modest number of confirmed attack records allows the model to reach high recall
without over-flagging harmless traffic [7, 8].

2.3.2 Machine Vector Support based models

SVM is a well-known algorithm in this category, but there are other algorithms
that can be used as well. For example, One-Class SVM (OC-SVM) is a variant
of SVM that is trained on a single class of data (non-disruptive discharges), and
generates a decision boundary that separates the normal data from the anomalies.
This approach is particularly useful when the dataset highly imbalanced.SVM,

OC-
SVM 2.3.3 Deep learning models
LSTM,
CNN,
Autoencoders
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Chapter 3

Development

This chapter describes the development of the anomaly detection system, which
aims to create a toolkit for anomaly detection, model training, and comparison
between different models. The toolkit is designed to be modular, allowing for easy
integration of new models and features.

3.1 System Design

The anomaly detection system is composed by independent nodes. There is a
central node that orchestrates the system, and several nodes that implement the
anomaly detection models. Each model node works as a microservice and is
responsible for training and predicting anomalies using its own algorithm. The
central node is responsible for managing the data flow between the model nodes
and the outlier protocol. The system design is shown in Figure 2.

Figure 2: Anomaly detection system design

3.2 Outlier Protocol

The outlier protocol is a custom protocol based on the OpenAPI specification. It
is a simple protocol that describes how the orchestrator interacts with the model
nodes, and is based on HTTP messages, which can be grouped into three main
categories: health, train, and predict.
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3.2.1 Health

Models must implement the /health endpoint. The orchestrator will send a get
message at a variable time. If the model does not answer, orchestrator must
consider the model as unavailable, and data must not be sent to this model.
Figure 3 shows the sequence diagram of the health message and its response. This
message also includes the model name, uptime, and last training time.

Figure 3: Health message sequence diagram

3.2.2 Train

This category describes how models will be trained in order to acquire data for
disruption prediction.

Protocol begins with a postmessage to the /trainmodel endpoint that contains
the number of discharges that will be sent to the models. Models that want to
accept the training, answer with a 200 response. Then the orchestrator sends,
one by one, the training discharges. After a discharge is received, models must
acknowledge it. When all discharges are sent, models shall start the training.

When the training is done, models must inform the orchestrator, as shown in
Figure 4.
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Figure 4: Train message sequence diagram

3.2.3 Predict

Actualizar la figura de predict. En el outlier protocol no están puestas las
features que se deben enviar. GH issue 3

The predict message is sent by the orchestrator to the alive models. It is a post
message to the /predictmodel endpoint.
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Prediction response message sequence diagram

Missing
figure

3.3 Outlier Orchestrator

The outlier orchestrator is the central node of the anomaly detection system. It
is responsible for managing the data flow between the model nodes, using the
outlier protocol to communicate with them.

The orchestrator consists on a frontend and a backend. The frontend is a web
application that allows users to interact with the system, while the backend is
responsible for managing the data flow and the communication with the model
nodes.

The frontend is built using HTML, CSS, and JavaScript, and provides a user-
friendly interface for managing the models and the data. It allows users to start
and stop the models, view the health status of the models, and visualize the results
of the anomaly detection.

The backend is built using Node.js, which is a JavaScript runtime that allows to
run JavaScript code on the server side. It uses the Express framework to handle the
HTTP requests and responses and Axios to communicate with the model nodes,
implementing the outlier protocol.

Communication between the frontend and the backend is done Socket.IO, which
is a library that allows real-time communication between the client and the server.
This allows the frontend to receive updates from the backend in real-time, such as
the health status of the models or the results of the anomaly detection.

3.3.1 Frontend

The frontend main page is shown in Figure 5. There are two main panels: the top
panel shows the available models, and the bottom panel consists on four tabs:
Prediction, Training, History, and Preview.
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Figure 5: Frontend main page

The backend is responsible for sending the model status to the frontend, including
the health status, the training status and the prediction results, while the frontend
is responsible of displaying this information to the user and sending the backend
the user actions, such as adding or removing models, enabling or disabling models,
changing model endpoints, starting a training, or making a prediction.

Model configuration is done through the Configure button, which opens a modal
where the user can change the model’s endpoints. This modal is shown in Figure 6.

Figure 6: Model configuration modal
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Prediction Tab

The prediction tab allows users to make predictions using the available models. It
provides a simple interface where users can choose the discharge to analyze. The
Figure 7 shows the prediction tab and the result of a prediction.

Figure 7: Frontend prediction tab

Training Tab

The training tab (Figure 8) is similar to the prediction tab, but users shall select more
than one discharge to train the models. For simplicity, there is a button that allow
to add multiple discharges at once, opening a modal that allows to select multiple
input files, group them using a custom regular expression, and exclude some files
with another regular expression. This modal is shown in Figure 9. Discharges can
also be labeled as disruptive or non-disruptive by setting a disruption time.
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Figure 8: Frontend training tab

Figure 9: Add multiple discharges modal
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3.3.2 Backend

3.4 Outlier Models

Every model node shall implement the outlier protocol in order to communicate
with the orchestrator. This means that every model is a microservice implementing
a server that exposes the necessary endpoints to the orchestrator. The models can
be implemented in any programming language, as long as they can handle HTTP
requests and responses. Models in this project are implemented in Python and
Rust.

3.4.1 Supervised Binary Classification

SVM

This project implements a SVM model for anomaly detection, which is trained
on both disruptive and non-disruptive discharges. The model is implemented in
pure Rust, implementing the outlier protocol using the actix_server framework
for the comunication with the orchestrator’s backend, and the linfa crate for the
SVM implementation.

The model extracts two features from the discharges: the mean value of the plasma
current and the FFT of the plasma current. This model can be used to classify
with a very low number of training samples, and it can also be used for real-time
predictions.

XGBoost

CNN-FFT

3.4.2 Outlier Detection

OC-SVM

Isolation Forest

LSTM
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